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Mean Field Games with major and minor players

Introduction and motivation

Introduction – Motivation
I Recent interest in models displaying interaction between agent’s

states and their distributions
1. Mean Field Games (MFG)
2. Control of McKean-Vlasov system (MKV)
3. Mean Field Games with Major and Minor Players (MFG Maj-Min)

⇒ Mixture of the two first systems

I In these contexts, the control problem is non-standard : need to
develop new methods and theoretical results.

I This article :
• ”An alternative approach to Mean Field Game with Major and

Minor players”
• R. Carmona and P. Wang
• Develop probabilistic methods (FBSDE) applied to MFG Maj-Min
• from the Stochastic Pontryagin Maximum Principle.
• Tools borrowed from R. Carmona and X. Zhu (2016)
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Mean Field Games with major and minor players

Introduction and motivation

Introduction – What difference with usual MFGs?

I Games with N + 1 players, but when N →∞, the influence of the
major player does not fade away in the asymptotic regime

I Asymmetry between the major player :
• That should consider its influence on other players
• Control of McKean Vlasov dynamics

I ... and the minor players
• That consider a standard control problem, but conditional to the

major player moves
• Analogy with MFG with common noise.

I Link between the two problems in the search for a Nash
Equilibrium (i.e. a fixed point !).
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Mean Field Games with major and minor players

Introduction and motivation

Introduction – Literature
I General case treated in R. Carmona and X. Zhu (2016)

• At a cost of some formalism for the control of McKean Vlasov :
– Major player : consider the derivative w.r.t. measure

I This type of problem introduced by Huang (infinite horizon) and
Huang and Nguyen (finite horizon).

• Non-linear case in Caines and Nourian.
• Bensoussan, Yam, Chau
• All these articles use PDE approach.

I Problem : in these articles, the major player states (and controls)
do not enter the minor players’ dynamics

• Relaxing this assumption poses technical difficulties :
• Huang and Nguyen : anticipative variational calculus
• R. Carmona and X. Zhu (2016) : Pontryagin Principle

I This article – R. Carmona and P. Wang (2017) :
• Treats the (simple) case, LQ, and provide an application
• Highlights the difference btw open and closed-loop strategies.
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Mean Field Games with major and minor players

Introduction and motivation

MFG with Major and Minor players – the problem

I A major player (states : X0) and a continuum of identical minor
players (states : X of measure µ), Here : representative minor
player. Coupled dynamics :

dX0
t = b0(t,X0

t , µt, α
0
t )dt + σ0(t,X0

t , µt, α
0
t )dW0

t

dXt = b(t,Xt, µt,X0
t , αt, α

0
t )dt + σ(t,Xt, µt,X0

t , αt, α
0
t )dWt

where
• W0 and W : resp. m0 and m-dim Brownian motions
• b and σ deterministic functions
• α0 Major control, and α minor players strategies valued in A0/A
• Interaction :

– 1st SDE depends on the distribution µt of the solution of the 2nd SDE
– 2nd SDE depends on the solution and control of 1st SDE.
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Mean Field Games with major and minor players

Introduction and motivation

MFG Maj-Min : control problem
I The control problem of both players is to find the optimal paths

(α0
t )t, and (αt)t, minimizing :

J0(α0, α) = E
[∫ T

0
f 0(t,X0

t , µt, α
0
t )dt + g0(X0

T , µT)

]
J(α0, α) = E

[∫ T

0
f (t,Xt, µt,X0

t , αt, α
0
t )dt + g(XT , µT)

]
I Issues :

• Optimal control of Major player depends on the distribution of the
state of the minor players.

• Optimal control of Minor player depends on the state and control of
the major player.

I Equilibrium : the distribution of the state of the representative
minor player, conditional on the dynamics of the major player :
µt = L(Xt|W0

[0,t])
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium

Choice of strategy : open-loop vs. closed-loop
I The strategy of the players can be assumed open-loop :

α0
t = φ0(t,W0

[0,t]) and αt = φ(t,W0
[0,t],W[0,t])

• Here, the control does not (directly) depend on the states (and
control) of the other players.

I Or assumed to be closed-loop :

α0
t = φ0(t,X0

[0,t], µt) and αt = φ(t,X0
[0,t], µt,X[0,t])

• Here, the control should account for its influence on the states (and
control) of other players.

I Or assumed to be closed-loop Markovian :

α0
t = φ0(t,X0

t , µt) and αt = φ(t,X0
t , µt,Xt)

• Idem, but the influence is only instantaneous.

I Difference : matters a lot for the control of McKean Vlasov system
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium

Best-response map and Nash equilibrium
I Nash equilibria : finding the fixed point of the ’best response map’,

here with two components :
• Response of the major player φ0,∗, taking as given all the minor

players φ
• Response of the deviating minor φ∗, taking as given the major

player φ0 and the other minor players response φ.

I Procedure : identify the best-response map before drawing the
fixed point :

• Major player :
φ0,∗(φ) = arginf

α0↔φ0
Jφ,0(α0)

• (Deviating) Minor player :

φ∗(φ0, φ) = arginf
α̃↔φ̃

Jφ
0,φ(α̃)

• Fixed point (Nash equilibrium) :

(φ̂0, φ̂) =
(
φ0,∗(φ̂), φ∗(φ̂0, φ̂)

)
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium

Best-response map : a control problem for the major player
I Major player’s best response requires to find the optimal control :

Jφ,0(α0) = E
[∫ T

0
f 0(t,X0

t , µt, α
0
t )dt + g0(X0

T , µT)

]
under the dynamics (open loop) :

dX0
t = b0(t,X0

t , µt, α
0
t )dt + σ0(t,X0

t , µt, α
0
t )dW0

t

dXt = b(t,Xt, µt,X0
t , φ(t,W0

[0,t],W[0,t]), α
0
t )dt

+ σ(t,Xt, µt,X0
t , φ(t,W0

[0,t],W[0,t]), α
0
t )dWt

where µt = L(Xt|W0
[0,t])

I Control of the McKean Vlasov type ! (conditional on the state of
the representative minor players.

I Find the best response φ0,∗(φ) (Stochastic Pontryagin Maximum Principle)
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium

Best-response map : a control problem for the minor player
I Deviating minor player’s best response : optimal control

• Suppose given the strategy of other (major and minor) players
• i.e. the dynamics of X0

t , Xt, through strategies φ0 and φ
• open loop, closed-loop or Markovian

I McKean Vlasov dynamics (open loop)

dX0
t = b0

(
t,X0

t , µt, φ
0(t,W0

[0,t])
)
dt + σ0

(
t,X0

t , µt, φ
0(t,W0

[0,t])
)
dW0

t

dXt = b
(
t,Xt, µt,X0

t , φ(t,W0
[0,t],W[0,t]), φ

0(t,W0
[0,t])

)
dt

+ σ
(
t,Xt, µt,X0

t , φ(t,W0
[0,t],W[0,t]), φ

0(t,W0
[0,t])

)
dWt

• This yields µt = L(Xt|W0
[0,t])

I Deviating minor player’s best response : optimal control α̃ :
I Standard control problem α̃ = arginf Jφ

0,φ, but with random
coefficients, i.e. conditional on these McKean-Vlasov dynamics.
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium

Best-response map : a control problem for the minor player

I Deviating minor player’s best response : optimal control α̃ :

Jφ
0,φ(α̃) = E

[∫ T

0
f
(
t, X̃t, µt,X0

t , α̃t, φ
0(t,W0

[0,t])
)
dt + g(X̃T , µT)

]
under its own dynamics (open loop) :

dX̃t =
(
t, X̃t, µt,X0

t , φ̃(t,W0
[0,t], W̃[0,t]), φ

0(t,W0
[0,t])

)
+ σ

(
t, X̃t, µt,X0

t , φ̃(t,W0
[0,t], W̃[0,t]), φ

0(t,W0
[0,t])

)
dW̃t

where µt = L(Xt|W0
[0,t])

I Standard control problem, but with random coefficients, i.e.
conditional on the McKean-Vlasov dynamics µt & X0

t above.

Thomas Bourany Mean Field Games with major and minor players Soutenance 15 / 36



Mean Field Games with major and minor players

Control strategy and Nash Equilibrium
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium
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Mean Field Games with major and minor players

Control strategy and Nash Equilibrium

Wrapping up

I Procedure : identify the best-response map before drawing the
fixed point :

• Major player :

φ0,∗(φ) = arginf
α0↔φ0

Jφ,0(α0)

• (Deviating) Minor player :

φ∗(φ0, φ) = arginf
α̃↔φ̃

Jφ
0,φ(α̃)

• Fixed point (Nash equilibrium) :

(φ̂0, φ̂) =
(
φ0,∗(φ̂), φ∗(φ̂0, φ̂)

)
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Mean Field Games with major and minor players

Resolution for Linear Quadratic model – 1st step

LQ model

I LQ model :
• Linear dynamics, depends linearly on the states (X0

t and/or Xt) and
the first-moment of the distribution X̄t = E[Xt|F0

t ]
• Quadratic costs in control α0 or α and in the diff.(X0

t − H0X̄t) or
(Xt − HX0

t − H1X̄t).

I Here we consider the mean-field limit (N →∞).

I Issue and remedy :
• Usually, resolution of control of McKean Vlasov dynamics :

through Stochastic Pontryagin Maximum Principle (SPMP)
• And involves the derivative of the Hamiltonian w.r.t. the measure µ
• Here, the only info we have about the measure is the mean X̄t
• Remedy : introduce X̄t as a new variable
• ... and solve the ’two variables’ system.
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Mean Field Games with major and minor players

Resolution for Linear Quadratic model – 1st step

LQ model : dynamics and strategy
I Linear dynamics :

dX0
t =

(
L0X0

t + B0α
0
t + F0X̄t

)
dt + D0dW0

t

dXt =
(
LXt + Bαt + FX̄t + GX0

t
)
dt + DdWt

• Taking the expectation E[·|F0
t ] in the second equation, with ᾱt :

dX̄t =
[
(L + F)X̄t + Bᾱt + GX0

t

]
dt

I We thus can rewrite the problem in terms of the couple
Xt := (X̄t,X0

t )
• Open-loop strategy : controls don’t depend on a change in states
• Closed-loop (Markovian) strategy : should restrict the reaction

function

α0
t = φ0(t,X0

t , X̄t) = φ0
0(t) + φ0

1(t)X0
t + φ0

2(t)X̄t

αt = φ(t,Xt,X0
t , X̄t) = φ0(t) + φ1(t)Xt + φ2(t)Xt + φ3(t)X̄t
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Mean Field Games with major and minor players

Resolution for Linear Quadratic model – 1st step

LQ model, 1st step : major player strategy
I Major player control problem :

inf
α0

E
[∫ T

0
XT

t F0Xt + 2XT
t f0 + ηT

0 Q0η0 + α0 TR0α
0 dt
]

under the dynamics of Xt :

dXt = (L0Xt + B0α
0
t + Bᾱt)dt + D0dW0

t
with the matrices :

Xt =

[
X̄t

X0
t

]
, L0 =

[
L + F G
F0 L0

]
, B0 =

[
0
B0

]
, B =

[
B
0

]
F0 =

[
HT

0 Q0H0 −HT
0 Q0

−Q0H0 Q0

]
f0 =

[
HT

0 Q0η0

−Q0η0

]
D0 =

[
0
D0

]
I The Hamiltonian (reduced) is given by :

H(r),ᾱ(t, x, y, α0) = yT(L0x+B0α
0+Bᾱt)+xTF0x+2xT f0+ηT

0 Q0η0+α0 TR0α
0
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Resolution for Linear Quadratic model – 1st step

LQ model, 1st step : major player strategy (closed loop)
I Major player control problem (closed loop)

inf
α0

E
[∫ T

0
XT

t F0Xt + 2XT
t f0 + ηT

0 Q0η0 + α0 TR0α
0 dt
]

under the dynamics of Xt :

dXt =
(
L(cl)

0 Xt + B0α
0
t + C(cl)

0 (t)
)
dt + D0dW0

t
with the matrices :

Xt =

[
X̄t

X0
t

]
L(cl)

0 =

[
L + B[φ1(t)+φ3(t)] + F Bφ2(t) + G

F0 L0

]
B0 =

[
0
B0

]
D0 =

[
0
D0

]
C(cl)

0 =

[
Bφ0(t)
0

]
, F0 =

[
HT

0 Q0H0 −HT
0 Q0

−Q0H0 Q0

]
f0 =

[
HT

0 Q0η0

−Q0η0

]
I The Hamiltonian (reduced) is given by :

H(r),φ(t, x, y, α0) = yT(L(cl)
0 x+B0α

0+C(cl)
0 (t)

)
+xTF0x+2xT f0+ηT

0 Q0η0+α0 TR0α
0
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Resolution for Linear Quadratic model – 1st step

LQ model, 1st step : major player strategy
I Remarks (both open and closed loop) :

• Adding a new variable X̄t ’converts’ the control of McKean-Vlasov
dynamics into a ’standard’ control problem.

• However, it is still conditional on the move ᾱt of the representative
minor player

– Conditionality is ’hidden’ in the assumption αt = φ(·)

I SPMP for McKean-Vlasov : Carmona, Delarue et al. (2015).
• Provides a necessary and sufficient condition – if H is jointly

convex in (x, α0) :

α̂0 ∈ arginf
α0

H(r),ᾱ(·, α0) (Isaacs cond°) ⇔ α̂0 = α0,? (optimal control)

• Obtain a coupled FBSDE system (solution : exist & unique for LQ).
• Adjoint BSDE :

dYt = −(DxH(t,X, µ,Y,Z, α̂)+Ẽ
[
DµH(t, X̃,L(X|F0), Ỹ, α̂)(X)

]
)dt+ZtdWt
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[
DµH(t, X̃,L(X|F0), Ỹ, α̂)(X)
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Resolution for Linear Quadratic model – 1st step

LQ model, 1st step : open-loop equilibrium

I Isaacs condition :
α̂0

t = −1
2

R−1
0 BT

0Yt

I Coupled FSBDE, conditional on minor agent action :
dXt = (L0Xt − B0

1
2 R−1

0 BT
0Yt + Bαt)dt + D0dW0

t
dYt = −(LT

0Yt + 2F0Xt + 2f0)dt + ZtdW0
t

YT = 0

I Solving this FBSDE is equivalent to finding the best response of
the major player
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Resolution for Linear Quadratic model – 1st step

LQ model, 1st step : closed-loop equilibrium

I Isaacs condition :
α̂0

t = −1
2

R−1
0 BT

0Yt

I Coupled FSBDE, conditional on minor agent reaction : dXt =
(
L(cl)

0 Xt + B0
1
2 R−1

0 BT
0Yt + C(cl)

0 (t)
)
dt + D0dW0

t
dYt = −(LT

0Yt + 2F0Xt + 2f0)dt + ZtdW0
t

YT = 0

I Solving this FBSDE is equivalent to finding the best response of
the major player
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Resolution for Linear Quadratic model – 1st step

LQ model, 1st step : closed-loop equilibrium
I Closed-loop specificity : we want to find a feedback form

α0
t = φ0(·) = φ0

0(t) + φ0
1(t)X0

t + φ0
2(t)X̄t

I Hypothesis on the decoupling field (affine) : Yt = KtXt + kt

I Finding the decoupling field :
• Sketch for the method :

– Use the ansatz Yt = KtXt + kt

– Apply Ito’s to get a second formula for dY
– Identify the two Itô processes (the first being the BSDE above)
– Obtain (two) Riccati’s ODE for Kt and kt

• The optimal control is

α̂0
t = −1

2
R−1

0 BT
0 Kt︸ ︷︷ ︸

[φ0
2(t)φ0

1(t)]

Xt−
1
2

R−1
0 BT

0 kt︸ ︷︷ ︸
φ0

0(t)
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Resolution for Linear Quadratic model – 2nd step

LQ model, 2nd step : open-loop equilibrium
I The deviating minor player, consider a fixed strategy α0 and α..

dXt = (L0Xt + B0α
0
t + Bᾱt)dt + D0dW0

t

I Given this state evolution (analogy : common noise !) :

I ... the deviating minor player solve the control problem :

inf
α̃
E
[∫ T

0
(X̃t − [H1,H]Xt − η)TQ(X̃t − [H1,H]Xt − η) + α̃T

t R0α̃t dt
]

under its own dynamics :
dX̃t =

(
LX̃t + Bα̃t + [F,G]Xt

)
dt + DdWt

I Control problem : (Random) reduced Hamiltonian :

H(r),α0,α(t, x̃, ỹ, α̃) = ỹT(Lx̃ + Bα̃+ [F,G]Xt
)

+ (x̃− [H1,H]Xt − η)TQ(x̃− [H1,H]Xt − η) + α̃TR0α̃
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Resolution for Linear Quadratic model – 2nd step

LQ model, 2nd step : open-loop & SPMP

I Application of the SPMP to this ’standard’ control problem :
• Conditional on Xt, H(r),α0,α is almost-surely convex in (x̃, α̃).

I Isaacs condition is N & S : α̃?t = − 1
2 R−1BT Ỹt

I Coupled FBSDE, solved by (X̃t, Ỹt) :
dX̃t =

(
LX̃t − B 1

2 R−1BT Ỹt + [F,G]X̃t
)
dt + DdWt

dỸt = −
(
LT Ỹt + 2Q(Xt − [H1,H]X̃t − η)

)
dt + ZtdWt + Z0

t dW0
t

ỸT = 0

using the offline dynamics :

dX̃t = (L0X̃t + B0α
0
t + Bαt)dt + D0dW0

t
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Resolution for Linear Quadratic model – 2nd step

LQ model, 2nd step : closed-loop equilibrium
I The deviating minor player, consider a fixed strategy α0 and α.

dXt = [L(cl)(t)Xt + C(cl)(t)]dt + D0dW0
t

with matrices :

Xt =

[
X̄t

X0
t

]
L(cl)(t) =

[
L + B[φ1(t)+φ3(t)] + F Bφ2(t) + G

F0 + B0φ
0
2 L0 + B0φ

0
1(t)

]
C(cl)(t) =

[
Bφ0(t)
Bφ0

0(t)

]
I Given this state evolution (analogy : common noise !) :

I ... the deviating minor player solve the control problem :

inf
α̃
E
[∫ T

0
(X̃t − [H1,H]Xt − η)TQ(X̃t − [H1,H]Xt − η) + α̃T

t R0α̃t dt
]

under its own dynamics :

dX̃t =
(
LX̃t + Bα̃t + [F,G]Xt

)
dt + DdWt
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Resolution for Linear Quadratic model – 2nd step

LQ model, 2nd step : closed-loop and SPMP
I Control problem : (Random) reduced Hamiltonian :

H(r),φ0,φ(t, x̃, ỹ, α̃) = ỹT(LX̃t + Bα̃t + [F,G]Xt
)

+ (x̃− [H1,H]Xt − η)TQ(x̃t − [H1,H]Xt − η) + α̃TR0α̃

I Again, apply the SPMP to the control problem :
• Isaacs condition is N & S : α̃?t = − 1

2 R−1BT Ỹt

I Conditional on Xt, H(r),φ0,φ is almost-surely convex in (̃x, α̃).

I Coupled FBSDE, solved by (X̃t, Ỹt) :
dX̃t =

(
LX̃t − B 1

2 R−1BT Ỹt + [F,G]X̃t
)
dt + DdWt

dỸt = −
(
LT Ỹt + 2Q(Xt − [H1,H]X̃t − η)

)
dt + ZtdWt + Z0

t dW0
t

ỸT = 0
dXt = [L(cl)(t)X̃t + C(cl)(t)]dt + D0dW0

t

• Search for a feedback loop/decoupling field (ansatz & identificat°)
• Obtain Riccati equations, etc.
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Resolution for Linear Quadratic model – Fixed point

LQ model, fixed point (open loop)
I Identify the fixed-point constraint, to insure Nash equilibrium :

• Best-response of major player :

α0
t = −1

2
R−1

0 BT
0Yt

(
= α0,∗(α)

)
where Yt solves the (X,Y) FBSDE (major player), and

• Best response of the minor player αt yields αt = E[α|F0] with :

αt = α̃t = −1
2

R−1BT Ỹt
(

= α̃∗(α0, α)
)

where Ỹ solves the (X̃t, Ỹt)-FBSDE (minor player), conditional on
the state evolution X̃t (itself depending on α0 and α).

I In equilibrium, X identifies with X̃

I Theorem 1 : Verification theorem :
• If the two systems of FBSDE admit a solution, then the LQ model

has an open loop Nash equilibrium, and the strategies are given by
these formulas.
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Resolution for Linear Quadratic model – Fixed point

LQ model, fixed point (closed-loop)
I Identify the fixed-point constraint, to insure Nash equilibrium :

• Best-response of major player :
α0,?

t = φ(t,X0
t , X̄t) = φ0

0(t) + φ0
1(t)X0

t + φ0
2(t)X̄t

= −1
2

R−1
0 BT

0Yt
(

= α0,∗(α)
)

= −1
2

R−1
0 BT

0 KtXt −
1
2

R−1
0 BT

0 kt

where Yt solves the (X,Y) FBSDE (major player)
• Best response of the minor player αt yields αt = E[α|F0] with :

α̃?t = φ(t,Xt,X0
t , X̄t) = φ0(t) + φ1(t)Xt + φ2(t)Xt + φ3(t)X̄t

= −1
2

R−1BT Ỹt
(

= α̃∗(α0, α)
)

= −1
2

R−1BT [StXt + StXt + st]

where Ỹ solves the (X̃t, Ỹt)-FBSDE (minor player), conditional on
the state evolution X̃t (itself depending on α0 and α).
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Resolution for Linear Quadratic model – Fixed point

LQ model, fixed point (closed-loop)

I Identify the fixed-point constraint, to insure Nash equilibrium.

I For major’s player feedback : Kt and kt solves specific Riccati’s
equation.

I For minor’s player feedback : St, St and st solves specific Riccati’s
equation.

⇒ More, the four Riccati ODE will be coupled :
I In equilibrium, X identifies with X̃
I Theorem 2 : Verification theorem :

• If the system of Riccati’s equation is well posed (and the two
systems of FBSDE admit a solution), then the LQ model has an
closed loop Nash equilibrium, and the strategies are given by the
above formulas.
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Application to Flocking models

Application to Flocking models
I Flock composed by :

• Leader (major player)
• Followers (a mean-field of minor players)
• Case 1 : leader does not consider so much the influence of the

followers :
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Application to Flocking models

Application to Flocking models

I Flock composed by :
• Leader (major player)
• Followers (a mean-field of minor players)
• Case 2 : leader care about the followers :
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Application to Flocking models

Discussion and conclusion

I Carmona and Wang (2016) : short and self-contained article
• Statement of the problems, resolution of LQ case
• Differences between Open and Closed loop Nash equilibria

I Carmona and Zhu (2016) is more complete, exhaustive article
I However, very interesting subject

• Concentrate all the difficulties and challenges of Differential games,
Mean Field Games and control of McKean Vlasov Dynamics.

I Article : pedagogical approach, a concrete example and link with
many other theories.

I Thank you for you attention !
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